Computable Functors and Effective interpretability

نویسندگان

  • Matthew Harrison-Trainor
  • Alexander Melnikov
  • Russell G. Miller
  • Antonio Montalbán
چکیده

Our main result is the equivalence of two notions of reducibility between structures. One is a syntactical notion which is an effective version of interpretability as in model theory, and the other one is a computational notion which is a strengthening of the wellknown Medvedev reducibility. We extend our result to effective biinterpretability and also to effective reductions between classes of structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computable Functor from Graphs to Fields

We construct a fully faithful functor from the category of graphs to the category of fields. Using this functor, we resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure S, there exists a countable field F with the same essential computable-model-theoretic properties as S. Along the way, we develop a new “computable category the...

متن کامل

On descent for coalgebras and type transformations

We find a criterion for a morphism of coalgebras over a Barr-exact category to be effective descent and determine (effective) descent morphisms for coalgebras over toposes in some cases. Also, we study some exactness properties of endofunctors of arbitrary categories in connection with natural transformations between them as well as those of functors that these transformations induce between co...

متن کامل

Characterising polynomial time computable functions using theories with weak set existence principles

Several authors have independently introduced second order theories whose provably total functionals are polynomial time computable functions on strings (e.g. [4], [6] and [7]), including the first author ([3], meant to be the second part of [2]). In this paper we give a detailed proof of the bi-interpretability result between such a second order theory and Buss’ first order bounded arithmetic,...

متن کامل

A Meta-package for Homological Algebra

The central notion of this work is that of a functor between categories of finitely presented modules over so-called computable rings, i.e. rings R where one can algorithmically solve inhomogeneous linear equations with coefficients in R. The paper describes a way allowing one to realize such functors, e.g. HomR, ⊗R, ExtiR, TorRi , as a mathematical object in a computer algebra system. Once thi...

متن کامل

homalg: A meta-package for homological algebra

The central notion of this work is that of a functor between categories of finitely presented modules over so-called computable rings, i.e. rings R where one can algorithmically solve inhomogeneous linear equations with coefficients in R. The paper describes a way allowing one to realize such functors, e.g. HomR, ⊗R, ExtiR, TorRi , as a mathematical object in a computer algebra system. Once thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Log.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2017